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A monotonically increas ing relationship is shown to exist between the cr i t ical  value of the 
pa r ame te r  R c and Bi. Numerica l  results  are given for  the R c - B i  relationship with boundary 
conditions of the third kind, and resul ts  for R e as a function of 2~/2~ 1 for boundary conditions 
of the fourth kind. 

The appearance of free convection in a thin layer of a homogeneous incompressible liquid between 
unbounded horizontal plates heated to different temperatures is a unique phenomenon [1, 2]. 

Theoretical calculations performed on the assumption that the liquid temperature at the boundary 
equals the plate temperature show that convection always occurs when R > 1708 [4]. 

Here we consider such a problem for the case in which there is a certain temperature drop at the 
boundary (where, for example, there is a thin layer of material with poor thermal conductivity between the 
liquid and the plate, which is maintained at a constant temperature). 

We allow for this temperature drop by specifying the boundary conditions of the third kind in the form 

_ )~ 0T = aT (T - -  TI )  (1 )  

Oz 

at the boundary. 

The case in which the liquid temperature at the boundary equals the plate temperature (condition of 
the first kind) represents a limiting case for our solution (when Bi ~ oo). 

We take the vertical axis as the z axis, and locate the origin at the center of the plane, so that the 
equations of the upper and lower plates will be z = I / 2 ,  z = - I / 2 .  

The temperature T O of the undisturbed liquid that satisfies the equation 

d2T~ -- 0 (2) 
dz 

and the boundary conditions 

is represen ted  as 

dTo ! 
- -  = % ( T ~ - - T o )  for z - -  (3 )  

dz 2 

To T1 + T2 hTa o 
= z.  ( 4 )  

2 l 

With allowance for (4), we wri te  the equation sys tem for smal[  dis turbances [4, 5] in T, w in the form 

( 0  ) a0AT ~---av 2 T = - - w ,  
l 

Institute of Heat and Mass Trans fe r ,  Academy of Sciences of the Belorussian SSR, Minsk. T r a n s -  
lated from Inzhenerno-Fiz icheski i  Zhurnat, Vol. 17, No. 2, pp. 233-238, August, 1969. Original ar t icle  
submitted October 16, 1968. 

�9 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

937 



with boundary conditions 

( ~ t - - v V 2 )  V~w = g[~v~T (5) 

_ ~  OT = + a r T  ' z =  +__l , (6) 
Oz - - 2 

Ow l 
w = 0 ,  -~z •0,  z =  + 2 ; (7) 

the second equation of (7) follows f rom the equation of continuity, s ince the veloci ty components along the 
x and y axes equal zero  at a solid boundary.  

We introduce the d imens ion less  coordinates  and t ime x / l ,  y / l ,  z / l ,  a t / l  2, and use the initial symbols  
x, y, z, t for  them. 

If in (5) we s e p a r a t e  va r i ab les ,  

C/ 
T = aoAT[ (x, y) 0 (z) exp (at), w = --i- f (x, y) r (z) exp (at), (8) 

we obtain the s y s t e m  

v ~, f + M,f = o, 

( a  - - D )  D ~  

((~ - -  D )  0 = co. 

For  the va r iab les  0, co we wr i te  the conditions (6), (7) in the fo rm 

(9) 

dO 1 
-- + B i 0  for z----- + - - ,  (10) 

dz 2 

co---~0, d ~  for z =  + 1 
d z  - - ~  . (11) 

It was shown in [4] that under the ze ro  boundary conditions for  0 and the condition (11) for  co, the 
threshold  of instabil i ty (appearance  of s t a t ionary  convect ive motion) mus t  be de te rmined  by the equation 

= 0. (This proof  is given in a shor t  fo rm in [3], p. 138.) This s t a tement  can also be proven for  boundary 
condition (10). The sole pecul ia r i ty  is the appearance  of the additional t e r m  14 = Bi([ 0(-1/2)[2 + [0(1/2)[2), 
which is posi t ive  for  r ea l  Bi. We omit  the proof.  

We shall  show that for  the s y s t e m  cons idered ,  the cr i t ica l  p a r a m e t e r  value R c is an increas ing  m o n o -  
t o n i c  function of the p a r a m e t e r  Bi. 

Let  us a s s u m e  that the s y s t e m  is c lose to the cr i t ica l  s ta te .  Then the p a r a m e t e r  R is posi t ive ,  while 
a i = 0. As a consequence,  in the p rob lem (9) with boundary condition (10), (11) we need only consider  rea l  
values of a (close to zero) .  It is not difficult to see  that the p rob lem of finding the eigenvalues and e igen-  
functions is a s soc ia ted  with the var ia t iona l  p rob lem of minimizing the functional [6] 

1/2 

f ( \  dz21(d2c~ M%))~+ RM ~ [ ( ~ ) ~ - - 2 0 r  dz + RM2Bi [e ~ ( 1 ) q - 0 ~  ( - - - ~ ) ]  (12) I (o) ,  0, B i ) :  . t  J 
--1/2 

for  a constant  value of 
~2 

H(r O) = ~ q- RM~O ~ dz (13) 

--1/2 

or  under  boundary conditions (11) for  w. The natural  boundary conditions a re  imposed  on the function 0. 
If the functions 0, w actual ly min imize  (12) under condition (13), then the m a x i m u m  eigenva[ue cr equals 

I(o), 0, Bi) 
a H(co, O) ' (14) 

since when we vary  (14) under the condition (11) we obtain (9) and the condition (10). F r o m  the var ia t ional  
pr inciple  fo rmula ted  and the definition of R c it follows that R c is a monotonical ly  increas ing  function of Bi. 
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T A B L E  1. Va lues  of the F i r s ~  Root  ~i of Eq. (19) 
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The minimum of R e occurs at Bi = 0, i .e.,  for a boundary condition of the second kind. (We note that 
the value Bi = 0 for 0 in (10) does not mean that the system is heat-insulated. This is equivalent to specify- 
ing a constant heat flux at the boundary.) The maximum of R c occurs when Bi ~ r162 It can be shown that 
when Bi ~ <r the maximum eigenvalue c~ (14) approaches the value a I obtained under the zero boundary 
conditions for the disturbance 0. As a consequence, when Bi ~ ~, the limit of R c is the value (Rc) I for a 
boundary condition of the f irst  kind. 

If the plates bounding the liquid are fairly thick, we will have none of the above boundary conditions 
for 0. In this case, the solution of (9) in the liquid must be coordinated at the boundary with the solution to 
the heat-conduction equation for the plate (condition of the fourth kind). If the plate is taken to be infinitely 
thick, the coordination conditions (requiring that the temperatures and fluxes be equal at the boundary) are 
easily reduced to a condition of the third kind (10), in which Bi has the following form: 

aT ~ + M~, (15) 

w h e r e  the s u b s c r i p t  1 r e f e r s  to the p l a t e .  

In this  c a s e ,  the p a r a m e t e r  R is w r i t t e n  as  

w h e r e  the f lux q is  t aken  to be  g iven .  

R -- gf3Pq , (16) 

av)~ 

In l ike  m a n n e r ,  we can  show that  f o r  a cond i t ion  of the t h i r d  k ind  the c r i t i c a l  s t a t e  of the s y s t e m  for  
(10), (15) o c c u r s  at (~ = 0 and that  the c r i t i c a l  va lue  of the p a r a m e t e r  R c is  a m o n o t o n i c a l l y  i n c r e a s i n g  
func t ion  of Bi ;  it  m u s t  be  r e m e m b e r e d  that  Bi  depends  on M and (r. 

Le t  us look at the d e t e r m i n a t i o n  of the c r i t i c a l  va lue s  of  R c. When ~ = 0, s y s t e m  (9) t akes  the f o r m  

Dho = RM20, (17) 

DO = - -  o) 

wi th  b o u n d a r y  cond i t i ons  (10), (11) fo r  c o n s t a n t  Bi in the f i r s t  c a s e  o r  f o r  

Bi---- )~1 /14 (18) 

in the second. 

The s o l u t i o n  of the s y s t e m  (18) wi th  b o u n d a r y  cond i t ions  (10), (11) is  ana logous  to the so lu t ion  with  
z e r o  b o u n d a r y  cond i t i ons  g iven  in [4]. Thus we s h a l l  not  g ive  i t  in i ts  e n t i r e t y ,  but  s h a l l  only  w r i t e  the 
t r a n s c e n d e n t a l  equa t ion  fo r  d e t e r m i n i n g  the r o o t s ,  in the no ta t ion  of [4], i n t r o d u c i n g  a dd i t i ona l  s y m b o l s  fo r  
the quan t i t i e s  r e q u i r e d  in our  c a s e .  

This  equa t ion  has  the fo rm 

--tg~ = 

w h e r e  (~, 

Bi (y sh 2ct~ + 8 sin 2135) 4- 2• (ch 2a~ - -  cos 213~) 

Bi (ch 2a~ + cos 2[~$) -}- 2~ (Yz sh 2 ~  - -  51 sin 2[3~) 

3 ,  y ,  and 5 a r e  g iven  in [4] (54), 

A~ § B ~ A - - I  -3-B ~ -3A-Jr- B 
= - -  , ~'i ~ , ~i ~ , 

A - - 1  V A ~ l l  V ~  

M 
= - -  i A - - I ,  M 4 A  3 = R. 

2 

(19) 

(20) 
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Fig .  1. P a r a m e t e r  R as  a funct ion  of M fo r  v a r i o u s  Bi 
(boundary  cond i t ions  of the f i r s t  kind)  (a) and ~1/2~ 
(boundary  cond i t ions  of the fou r th  kind)  (b); mn)  l ine  
r e p r e s e n t i n g  c r i t i c a l  va lue s  R c and c o r r e s p o n d i n g  v a l u e s  

M c �9 

The  p r o b l e m  c o n s i s t s  of us ing  (19) to d e t e r m i n e  the v a l u e s  of the r o o t s  ~j = ~j(Bi,  M) as  a funct ion  of the 
p a r a m e t e r s  Bi ,  M, and then f inding  the m i n i m u m  of R with  r e s p e c t  to M fo r  a s p e c i f i e d  va lue  of Bi .  By 
de f in i t ion  (20), 

Rc = minM R = min~ [M4 ( l q- 4~'(M' Bi) )a 1 - -  ~ " �9 (21) 

It was established in [4] that under a boundary condition of the first kind, the minimum of (21) occurs 
for the first root of (19) when Bi ~ ~. From what we have proven above, under a boundary condition of the 
third kind, R c increases monotonically with Bi. Thus we might expect that for finite Bi, including Bi = 0, 
a minimum will also occur for the first root of (19). To demonstrate this by direct computation, we first 
determined the values of the first three roots of (19) roughly (by a graphical method) for several values of 
Bi and M. The analysis showed that for finite Bi, there actually is a minimum of R for the first root; the 
value M c corresponding to the critical value R c decreases with Bi. The values of the first root of (19) were 
therefore determined quite accurately for a large number of Bi and M points (Table 1). Figure la  shows 
R as a function of M for various Bi, on the basis of the tabulated computed values. 

For boundary conditions of the fourth kind, in Eq. (19), Bi depends on M in accordance with (18). Thus 
for the given case, the table of roots of (19) was not recomputed, but was obtained for several values of 
k l / a  and M by quadratic interpolation at appropriate parts of the table. Figure lb shows the calculated re-  
sults for R. As we see, with increasing heat-insulation, the instability of the liquid rises. As Bi increases, 
the cell dimension (~ l/M) decreases. 

The results of a similar analysis for an inhomogeneous fluid (binary gas mixture) will be published 
l a t e r .  
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N O T A T I O N  

a r  

Dr 
AT = T 1 - T  2 
A, A 1 
e~ t 
l is 
T O is 
T is 
w is 
g is 
f i = - ( 1 / p ) / ( O p / O T ) p  is 
~, 021 iS 
M 2 is 
0 is 
o3 is 
V 2 = V~ + (0V0z2); 

v~ = (~2/ax2) + (~2/~y2); 
D = d2/dz 2-M2; 

R = g~l~O~oAT/av ; 
o~ o = Bi/(2 + Bi). 

is the Grashof number;  
is the Prandt l  number;  
is the difference in the tempera tures  of the upper and lower plates; 
are  the respect ive thermal  conductivities of liquid and plate; 
is the hea t - t r ans fe r  coefficient; 

the plate separat ion;  
the tempera ture  of the undisturbed liquid; 
the magnitude of the tempera ture  disturbance;  
the z axis velocity component; 
the f ree- fa l l  accelerat ion;  
the coefficient of volume expansion of the liquid; 
the thermal-dif fus ivi ty  coefficient for the liquid and plate, respect ively;  
the separa t ion-of -var iab les  constant; 
the dimensionless value of the tempera ture  disturbance;  
the dimensionless z axis velocity component; 
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